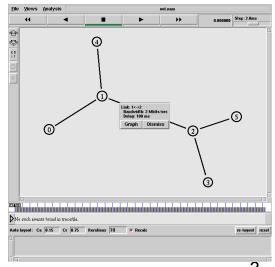
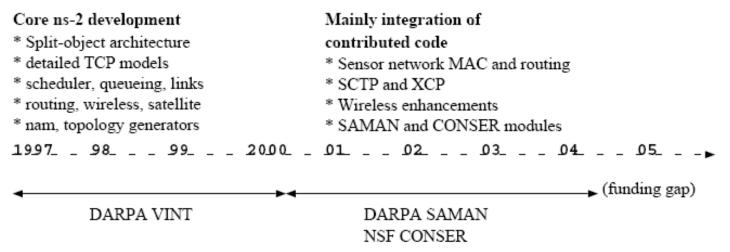
Improving Simulation Credibility Through Open Source Simulations

Tom Henderson University of Washington The Boeing Company

Simutools Conference March, 2008


Talk outline

- A decade of ns-2 network simulations
- *ns* challenges and directions
 ns-3 project overview
 - Dealing with simulation credibility issues


What is *ns* (or *ns*-2)?

- *ns* is a discrete-event network simulator for Internet systems
 - protocol design, prototyping, multiple levels of abstraction
- *ns* has a companion network animator called *nam*
 - -hence, has been called

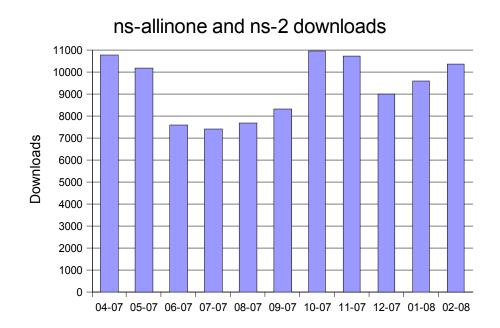
the <u>nsnam</u> project

Some ns-2 history

- Dedicated project funding on the simulator itself finished in 2000
 - -Key institutions: USC ISI, Berkeley, LBNL, ICIR, PARC, and others

ns is a research community resource

Simulators	ns-2	OPNET	QualNet/GloMoSim
Transport layer and above	123(75%)	30(18%)	11(7%)
Network layer	186(70%)	48(18%)	31(12%)
MAC & PHY layers	114(43%)	96(36%)	55(21%)


Source: Search of ACM Digital Library papers citing simulation, 2001-04

• Other statistics:

- Over 50% of ACM and IEEE network simulation papers from 2000-2004 cite the use of *ns-2*
 - Source: ACM Digital Library and IEEExplore searches
- 10 Simutools 2008 papers/posters related to ns-2

Still in heavy use...

 over 8000 downloads/month (ns-2 plus nsallinone), active mailing lists

Statistics: SourceForge project site (http://sourceforge.net/projects/nsnam/)

ns-2 contributed code

where most ns-2 development now occurs

	Existing core ns-2 capability	ns-2 contributed code
Applications	ping, vat, telnet, FTP, multicast FTP, HTTP, probabilistic and trace-driven traffic generators, webcache	NSWEB, Video traffic generator, MPEG generator, BonnTraffic, ProtoLib, AgentJ, SIP, NSIS, ns2voip, Agent/Plant
Transport layer	TCP (many variants), UDP, SCTP, XCP, TFRC, RAP, RTP Multicast: PGM, SRM, RLM, PLM	TCP PEP, SCPS-TP SNACK, TCP Pacing, DCCP, Simulation Cradle, TCP Westwood, SIMD, TCP-RH, MFTP, OTERS, TCP Eifel
Network layer	Unicast: IP, MobileIP, generic dist. vector and link state, IPinIP, source routing, Nixvector Multicast: SRM, generic centralized MANET: AODV, DSR, DSDV, TORA, IMEP	AODV+, AODV-UU, AOMDV, ns-click, ZRP, IS-IS, CDS, Dynamic Linkstate, DYMO, OLSR, ATM, AntNet, Mobile IPv6, IP micro-mobility, MobileIP, GPSR, RSVP, PGM, PLM, SSM, PUMA, ActiveNetworks
Link layer	ARP, HDLC, GAF, MPLS, LDP, Diffserv Queueing: DropTail, RED, RIO, WFQ, SRR, Semantic Packet Queue, REM, Priority, VQ MACs: CSMA, 802.11b, 802.15.4 (WPAN), satellite Aloha	802.16, 802.11e HCCA, 802.11e EDCA, 802.11a multirate, UWB DCC-MAC, TDMA DAMA, EURANE, UMTS, GPRS, BlueTooth, 802.11 PCF, 802.11 PSM, MPLS, WFQ schedulers, Bandwidth Broker, CSFQ, BLUE
Physical layer	TwoWay, Shadowing, OmniAntennas, EnergyModel, Satellite Repeater	ET/SNRT/BER-based Phy, IR-UWB
Support	Random number generators, tracing, monitors, mathematical support, test suite, animation (nam), error models	Emulation, CANU mobility, BonnMotion mobility, SGB Topology Generators, NSG2, simd, ns2measure, ns-2/akaroa-2, yavista, tracegraph, huginn, multistate error model,

RPI graphing package, jTrana, GEA,

Skepticism abounds, however

"For years, the community had to rely on simulators, which now seem a little dated, and it's not clear who was convinced to adopt anything new based on ns2 simulations;"

Nick McKeown, VINI public review, ACM Sigcomm 2006

Overheard* on e2e-interest mailing list

- "...Tragedy of the Commons..."
- "...around 50% of the papers appeared to be... bogus..."
- "Who has ever validated NS2 code?"
- "To be honest, I'm still not sure whether I will use a simulation in a paper."
- "...I will have a hard time accepting or advocating the use of NS-2 or any other simulation tool"

Trends

Many researchers move away from simulations

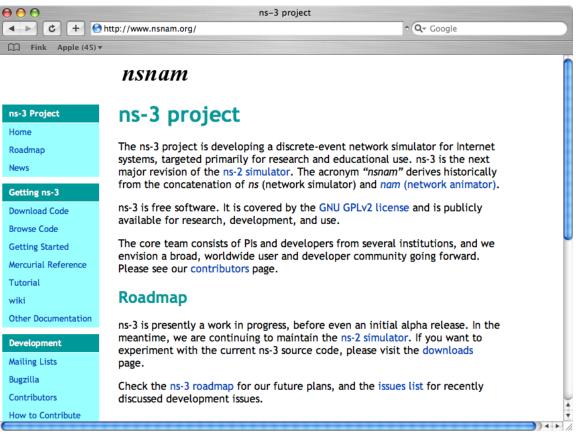
 Experiments and testbeds (real or virtual) start to be preferred in major conference papers

 PlanetLab, OneLab, VINI, Emulab, ORBIT, WhyNet, ...

Yet simulation tools proliferate

 ns-2, OMNET++, NetSim, NCTUns, QualNet, OPNET, SSFNet, yans, GTNetS, GloMoSim, OSA, JiST/SWANS, cnet, simscript, Traffic, Shunra VE, Extend, INES, J-Sim, HEGONS, Narses, 3LS, NeuroGrid, P2PSim, PeerSim, ONE, ...

Challenges for ns (and simulators)


Align with how research is now conducted

Improve credibility

Can ns-3 help with these problems?

What is ns-3?

An open source project building a new network simulator to replace ns-2

Relationship to ns-2

ns-3 is *not* an extension of ns-2

does not have an OTcl API

-C++ wrapped by Python

- synthesis of yans, ns-2, GTNetS simulators, and new software
 - example ns-2 models so far: random variables, error models, OLSR
- guts of simulator are completely replaced
- new visualizers are in works

ns-3 people

- NSF PIs:
 - Tom Henderson, Sumit Roy (University of Washington), George Riley (Georgia Tech.), Sally Floyd (ICIR)
- **Associated Team:** INRIA Sophia Antipolis, Planete group
 - Walid Dabbous, Mathieu Lacage (software lead)
- Developers: Raj Bhattacharjea, Gustavo Carneiro, Craig Dowell, Joseph Kopena, Emmanuelle Laprise

ns-3 priorities

- Aid the serious network researcher
 - -Flexible low-level API
 - -Software reuse
 - Modularity
 - -Scalability
 - -Current models
- Ease educational use via higher-level APIs and scripts
- Open source development model and community participation

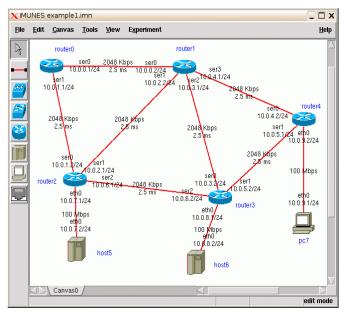
Challenges for ns (and simulators)

Align with how research is now conducted

• Improve credibility

Why simulate?

- Field tests are expensive
 - -Food, lodging, equipment rental, labor, etc.
- Experiments (especially wireless) can be hard to reproduce
- Collaboration


For these reasons, simulation is vital part of our work

My simulation requirements

- Reduce time, when possible, developing complicated protocols
 - e.g. Open Shortest Path First (OSPF)
- Need to validate results in field testing
- Interim step often desired: Emulation
- Align with common interfaces; e.g.
 - pcap tracing (tcpdump)
 - ns-2 mobility scenarios
 - topology generators

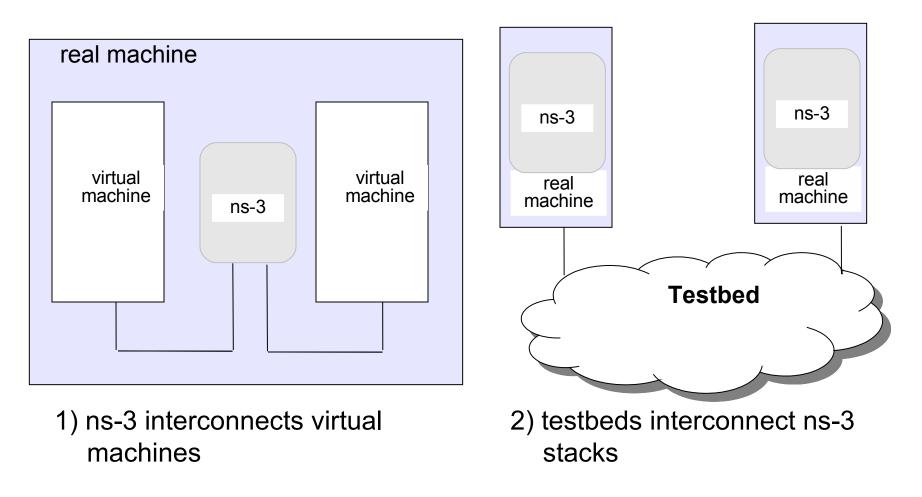
Example project: IMUNES

- Integrated Multiprotocol Network Emulator/Simulator
 - Leverages FreeBSD netgraph and lightweight stack emulation
 - http://www.tel.fer.hr/imunes/

Example: OSPF-MANET project (Boeing)

Write new code once, run in many environments

- (simulation) Quagga OSPFv3 ported to GTNetS
- (emulation) Quagga running on IMUNES
- (experiments) Quagga running on madwifi
 - http://hipserver.mct.phantomworks.org/ietf/ospf



- Integration with testbeds and virtual machines
 - -emulation modes
- Use of real code, where possible

ns-3 design strategies for emulation

- Align ns-3 to be more faithful representation of real computers
 - -sockets API
 - -packets are serialized
 - -packet sockets
 - -alignment with Linux architecture
 - -multiple network interfaces

ns-3 goals for emulation

ns-3 and research priorities

In summary, make it easier to move from simulation to emulation to experiments

- Align with popular interfaces
- Support use of real code
- Develop emulation capabilities

Other software improvements

- Better modularity
- (Optional) Python interface
- Flexible tracing framework
- Powerful logging (debugging)
- In-line documentation (Doxygen)
- (Future plan): Distributed simulations

Challenges for ns (and simulators)

• Align with how research is now conducted

Improve credibility

[1] "Why We STILL Don't Know How to Simulate Networks"

- Mostafa Ammar, Georgia Institute of Technology, Annual Simulation Symposium 2005
- [2] "Maintaining a Critical Attitude Towards Simulation Results"
 - Sally Floyd, WNS2 Workshop Keynote, October 2006

Background (cont.)

[3] "MANET Simulation Studies: The Incredibles"

- Kurkowski, Camp, and Colagrosso, ACM
 Sigmobile, MC2R, Volume 9, Issue 4, October
 2005
- [4] "An Integrated Approach to Evaluating Simulation Credibility"
 - Muessig, Laack, and Wrobleski, U.S. Naval Air Warfare Center, August 2001

Criteria for Credibility

- Repeatable
- Unbiased
- Realistic Scenarios
- Statistically Sound
- Model Accuracy
- Results Accuracy (Validation)
- Data Accuracy
- Usability

from [4]

from [3]

Repeatability

- Identify simulator, version, operating system, parameters, etc.
- Make code and configuration scripts available to the community
 - -Yet, <u>0 out of 84</u> ACM Mobihoc MANET simulation papers (2000-2004) referenced publicly available code (from [3])

Repeatability in ns-3

- We will host your code/scripts in a number of possible ways
 - -Contribute your code to the ns-3 core
 - src/contrib directory, or main tree
 - Contribute unmaintained code or scripts to our repository
 - -Contributed Code page (wiki)
- Simulation output that dumps pertinent configuration data to an output file (planned)

Unbiased

- Initialization bias
- Pseudo-Random Number Generator issues
- Use a variety of scenarios

- Much of this is up to the researcher to get right
 - Note: ns-3 inherits ns-2's combined multiple recursive generator from Pierre L'Ecuyer

Realistic scenarios and conditions

- Multiple scenarios tested
- Simulator defaults are reasonable
- Derived parameters are reasonable
- Appropriate levels of abstraction used

Statistically sound

- Metric collection
- Generating sufficient runs
- Avoid biases (above)
- Data processing

- In ns-3:
 - -Flexible means to collect metrics
 - Lean on other projects who have contributed frameworks for this to ns-2

Model accuracy

"error-free-ness" of software and models

- ns-3 goals here:
 - -Support real code where possible
 - Open source models
 - Regardless, we need people or groups to develop and maintain good models

Open source simulations

- "Given enough eyeballs, all bugs are shallow"
 Eric Raymond, "The Cathedral and the Bazaar"
- ns-3 needs ways to certify models, too
 capture level of community acceptance
 - -publication lists, cross-reference
 - need to identify maintainers, or state the absence of a maintainer
 - -validation techniques

Results accuracy

- validation against other simulators
- validation against expert opinion
- validation against (good) test data

ns-3 and validation

- exploit tracing framework to validate events or statistics
- code coverage tests (in regression suites)
- unit tests, valgrind
- calibrate against testbeds

Example: ORBIT collaboration

 Planned use of Rutgers WINLAB ORBIT radio grid to validate ns-3 wifi models

Usability

- not "ease of use" so much as "avoidance of misuse"
 - -training and tutorials
 - responsive mailing lists
 - -extensive documentation
 - configuration management
- NSF project for ns-3 funds some of these activities

Other activities to improve credibility

- Transport Modeling Research Group (TMRG)
- Discussions on IRTF work to produce a "Simulation Best Practices" document
- Reviewing community raises the bar on paper/thesis acceptance
- (Your ideas wanted!)

- Learn from good and bad examples of simulation research, to produce credible simulations
- Consider open source (or publishing of models and scripts) to be integral part of your research
- Please give back to the simulators that you use

Closing remarks on ns-3 (March 2008)

ns-3 is in a pre-alpha state

- monthly development releases
- APIs being finalized
- emphasis has been on setting the architecture
- new users should expect rough edges
- many opportunities to work on the core models

What others are already using ns-3 for:

- wifi-based simulations of OLSR and other MANET routing
- MANET routing (SMF and unicast protocols)
- OntoNet: Scalable Knowledge Based Networking" by Joe Kopena and Boon Thau Loo (UPenn)

ns-3 roadmap (2008)

near term (through June)

 finalize and release simulation core (April/May)

-core APIs

- ns-3.1 complete release (June timeframe)
 –add Internet and Device models
 - -add validation framework
 - –some higher-level topology/scenario APIs

ns-3 roadmap (2008)

planned for later this year

- emulation modes
- statistics
- support for real code
- additional ns-2 porting/integration
- distributed simulation
- visualization

We're looking for more early adopters and users

Web site: http://www.nsnam.org Mailing list: http://mailman.isi.edu/mailman/listinfo/ns-developers **Tutorial**: http://www.nsnam.org/docs/tutorial/tutorial.html Code server: http://code.nsnam.org Wiki: http://www.nsnam.org/wiki/index.php/Main Page

Acknowledgments

- This talk builds on lots of ideas/suggestions collected over time, and discussion with ns-3 team
- Tom Henderson is supported by NSF CNS-0551686 (University of Washington)